Image from Google Jackets

Optimal inference for spot regressions

By: Material type: TextTextPublication details: American Economic Review March 2024Subject(s): Online resources: Summary: Betas from return regressions are commonly used to measure systematic financial market risks. "Good" beta measurements are essential for a range of empirical inquiries in finance and macroeconomics. We introduce a novel econometric framework for the nonparametric estimation of time-varying betas with high-frequency data. The "local Gaussian" property of the generic continuous-time benchmark model enables optimal "finite-sample" inference in a well-defined sense. It also affords more reliable inference in empirically realistic settings compared to conventional large-sample approaches. Two applications pertaining to the tracking performance of leveraged ETFs and an intraday event study illustrate the practical usefulness of the new procedures.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Vol info Status Barcode
Article Index Article Index Dr VKRV Rao Library Vol.114, No.3 Not for loan AI23

Betas from return regressions are commonly used to measure systematic financial market risks. "Good" beta measurements are essential for a range of empirical inquiries in finance and macroeconomics. We introduce a novel econometric framework for the nonparametric estimation of time-varying betas with high-frequency data. The "local Gaussian" property of the generic continuous-time benchmark model enables optimal "finite-sample" inference in a well-defined sense. It also affords more reliable inference in empirically realistic settings compared to conventional large-sample approaches. Two applications pertaining to the tracking performance of leveraged ETFs and an intraday event study illustrate the practical usefulness of the new procedures.

There are no comments on this title.

to post a comment.
Share